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My goal is to build programming languages, compilers, and runtime systems for
efficient and secure AI systems that make it easy to develop and deploy end-to-end AI pipelines
on large-scale distributed clusters, while utilizing heterogeneous architectures.

Distributed and heterogeneous hardware are increasingly used to meet the performance re-
quirements of today’s applications. These architectures are tedious to program because of their
heterogeneity, as devices such as CPU, GPU, FPGA, and TPU provide different programming
abstractions and may have disjoint memories, even if they are on the same machine. Moreover,
applications are written by experts in the application domain rather than experts in parallel
programming. Consequently, it is hard for programmers to: (1) write efficient code for each
device, (2) distribute execution across devices, (3) orchestrate communication between devices,
and (4) port code to new emerging devices. To address these problems, my goal is to design
programming languages that provide a common domain-specific interface for all devices, and
build compilers and runtime systems that generate efficient architecture-specific code for each
device, distribute computation among devices, and move data between them efficiently.

The datasets and models used by AI applications are growing in size. With this growth,
there is an increasing need to exploit sparsity in the dataset or the model for efficiency. For
example, most of the weights (model) learned in many typical deep neural networks (DNN)
may be pruned for faster inference without loss in accuracy. On the other hand, privacy of the
datasets used must be preserved in many applications, especially if they run on public clouds.
For example, applications may need to run DNN inference on medical or financial data without
violating the data owner’s privacy. Fully-Homomorphic Encryption (FHE) enables computation
on encrypted data without requiring the secret key. In my view, an FHE scheme is akin to yet
another heterogeneous device, so compilers can generate code for them to enforce privacy.

My dissertation research focuses on distributed and heterogeneous graph analytics
and privacy-preserving neural network inferencing, and introduces new techniques in
systems for sparse computing and privacy-preserving applications respectively. I designed and
built a graph analytics system [6, 7] that partitions graphs [17] and optimizes communication on
distributed, heterogeneous architectures, while providing application-specific fault-tolerance [8].
This system was an order of magnitude faster than existing systems at scale. I designed a new
language [9] for FHE and built an optimizing compiler [12] that translates DNN inference to
run on encrypted data using FHE efficiently, while guaranteeing security and accuracy. The
generated codes were an order of magnitude faster than expert-written codes.

During my time at the graph AI startup, Katana Graph, I interacted with customers to un-
derstand their challenges in using AI systems. To address their major concerns, I led the graph
engine team to build a distributed cloud platform for computing AI, analytics, and queries
efficiently on large-scale graphs. My team built an in-memory and on-storage log-structured
representation for labelled property graphs that is compact for sparse node and edge proper-
ties, while being efficient for both reading and updating the graph topology and properties. I
designed and built the distributed graph querying engine that minimizes latency of business
intelligence queries and scales well on distributed hosts. Katana Graph was significantly faster
than our competition in the end-to-end time for a typical graph AI pipeline.

Overall, I have collaborated with researchers in different areas, including programming
languages, systems, cryptography, security, and theory, and worked across the software stack
such as algorithms, compilers, and low-level runtimes. The common theme in my research is
to find important application domains, design programming abstractions for each application
domain, and exploit domain knowledge at the right layer of the software stack to determine
the right trade-off between productivity, portability, performance, and privacy. My vision is to
build easy-to-use AI systems that enables application developers to reason about this trade-off.
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Research Contributions

Distributed and Heterogeneous Graph Processing: Graph analytics systems provide a
simple programming model to develop applications that analyze graphs like ranking web pages
in search engines, finding clusters in biological networks, evaluating recommender systems, and
finding shortest routes in maps. Such systems must handle large graphs like the Facebook friends
graph, which has more than 2 billion nodes and 400 billion edges. Shared-memory systems
like Galois [23], Ligra [27], and IrGL [24] are efficient but have limited memory and compute
resources. Prior distributed-memory systems either did not scale or were not competitive with
shared-memory systems. Moreover, they were restricted to CPUs and there was no way to reuse
their techniques to leverage accelerators like GPUs. My dissertation addressed these issues.

Programming Model and Runtime: In my PLDI 2018 paper [6] and PACT 2019 pa-
per [7] (one of the four Best Paper Nominees), I introduced a novel approach to build distributed
graph analytics systems that exploits heterogeneity in processor types and partitioning policies.
Programmers write applications in Galois for CPU or IrGL for GPU, and interface with Gluon,
a communication-optimizing substrate. Gluon partitions the graph and offloads each partition
to a CPU or GPU. I designed a new asynchronous execution model called Bulk-Asynchronous
Parallel (BASP). Exploiting the domain knowledge that graph analytics applications are re-
silient to stale reads, I introduced a novel way to synchronize the partitions eventually. I also
created communication optimizations that exploit structural and temporal invariants of
graph partitioning policies. Existing graph analytics (or sparse matrix) systems for a single
CPU or GPU can use Gluon to scale out to distributed clusters with little effort.

Gluon’s modularity and abstraction does not come at the cost of performance. Execution
time of Gluon improved by ∼3× on average due to its communication optimizations, enabling
it to scale well up to 256 CPUs and 64 GPUs. Gluon was faster than the prior state-of-the-art
distributed CPU-only system, Gemini [29], by ∼4× and ∼5× on average using CPUs and GPUs
respectively. It was on average ∼12× faster than the only other distributed GPU-only system,
Lux [22], at scale. Gluon is the only asynchronous distributed GPU graph system currently.

Resilience: My ASPLOS 2019 paper [8] tackles fail-stop faults (or machine crashes). The
traditional way to tolerate faults is to checkpoint the application’s state periodically and roll-
back the state to the last checkpoint when a fault occurs. Faults are rare, but checkpointing
has overheads, even when no faults occur. My insight was that to recover from faults, it is
sufficient to restart the computation (or roll-forward) from a state that will ultimately produce
the correct result. Such states are called valid states. I classified graph algorithms and designed
class-specific recovery protocols called Phoenix to compute a valid state from the current
state. The computation function can be provided by programmers with little effort. Phoenix
was incorporated into Gluon to make it resilient to fail-stop faults. Phoenix not only has
no overhead in the absence of faults, but also outperforms checkpointing when few faults occur.

Software Stack: My work on Gluon has led to research on different aspects of graph pro-
cessing. I collaborated with researchers to: (1) build a distributed training framework [16], on
top of Gluon, for a class of applications like Word2Vec that use Skip-gram-like models to gener-
ate embeddings; (2) optimize the graph analytics runtime for byte-addressable memory [14]; (3)
build the Abelian compiler [13] that compiles code written in its domain-specific language to
run on distributed and heterogeneous clusters by generating CUDA code as well as the required
communication code using Gluon; (4) develop an alternative to the Message Passing Interface
(MPI) for graph analytics called Lightweight Communication Interface (LCI) [5]; (5)
study the impact of different partitioning policies on execution time [15, 21] and build a fast
Customizable, Streaming Partitioner (CuSP) [17]; and (6) develop distributed imple-
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mentations of efficient algorithms for betweenness centrality [19], triangle counting [18], and
belief propagation [28]; and (7) build programming frameworks [2, 1] for graph pattern min-
ing (GPM) problems such as motif counting. During this time, I mentored graduate students
and post-doctoral scholars, namely Loc Hoang, Bozhi You, Hochan Lee, Vishwesh Jatala, and
Xuhao Chen. These works were published in VLDB, IPDPS, PPoPP, ICS, and Euro-Par.

Privacy-Preserving Deep Neural Network (DNN) Inference: Fully-Homomorphic En-
cryption (FHE) enables offloading both storage and computation of sensitive data to public
clouds, without trusting software vendors, hardware vendors, or any third party with their se-
cret key. However, developing FHE applications requires cryptographic expertise. In my PLDI
2019 paper [12], I built an end-to-end software stack called CHET for compiling tensor pro-
grams like DNN inference to run on FHE libraries [26, 20] that support fixed-point arithmetic.
In my PLDI 2020 paper [9], I designed a new encrypted vector arithmetic language and compiler
called EVA for developing general-purpose FHE applications.

Runtime: FHE schemes allow batching thousands of plaintext elements into a ciphertext
vector and perform element-wise vector operations to amortize the cost. Like Intel MKL li-
braries, which have different implementations of linear algebra operations, I built a library of
homomorphic tensor operations with different ways to map or layout tensors onto vectors.

Compiler: Encryption parameters influence the FHE computation. Setting these param-
eters low can make the computation insecure, whereas setting them large can increase the cost
of homomorphic operations. Moreover, when these parameters are not sufficiently large, the
encrypted result becomes corrupted. For two state-of-the-art FHE schemes [4, 3], I introduced
compiler analysis to determine the minimum required encryption parameters for a program
that ensures it is correct and secure. I then created compiler analysis to estimate the cost of a
program using a cost model for the two schemes. CHET explores different layouts, determines
encryption parameters and cost for each layout, and picks the best-performing one.

EVA is designed to be an intermediate representation that is a backend for other domain-
specific compilers. I modified CHET to generate EVA programs for DNN inference. I built an
optimizing compiler for EVA that generates correct and secure programs, while hiding all the
complexities of the target FHE scheme. The compiler eliminates all common runtime exceptions
and optimally inserts FHE instructions like rescaling and modulus switching.

CHET was the first compiler for DNN inference using FHE. It enabled homomorphic in-
ference of deeper DNNs than was viable by experts’ programming. It also allowed using FHE
schemes that are much harder to program. Due to this and other optimizations, CHET was an
order of magnitude faster than expert-written codes, even for small DNNs. CHET, when re-
targeted onto EVA, is only 2-3 orders of magnitude slower than simple, unencrypted inference
— a new landmark for FHE. EVA also enabled a wider adoption of FHE for other applications.

Research Agenda

Hardware specialization is on the rise with companies building custom silicon for AI. The
models are growing exponential in size; billions of weights are now common. The datasets to
train these models are also growing larger. I believe programming languages, compilers, and
runtime systems are essential in helping AI scientists and users navigate this space without
sacrificing performance or privacy and I am excited to pursue research in that direction.

Feature Generation: Consider the elements in a dataset such as unique words in a text
corpus, protein molecules in a biological dataset, and accounts in a financial dataset. Both
training and inference rely on features already generated for the elements. The quality of
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the features directly impact the accuracy of the trained model. One way to generate better
features is to exploit any structure in the dataset like the interactions between proteins or the
transactions between accounts. To do so, the dataset can be abstracted as a graph, where the
elements form the nodes and their interactions form the edges, and graph analytics and graph
queries can be used to generate more contextualized features for the elements. I plan to build
systems that make it easier to compose such better feature generators.

Large-Scale Training: Large datasets and models take a long time to train. Reducing the
time or cost for training can have a huge impact, especially in enabling more hyper-parameter
tuning. The key to this is to better utilize distributed and heterogeneous hardware. I plan to
leverage my experience with polyhedral compiler techniques [11, 10, 25], to generate locality
optimized code for heterogeneous architectures. Building on my experience with Gluon, I want
to build distributed schedulers and communication systems that are optimized for training.

Lightweight Inference: AI users may need to perform inference using large models on
public clouds or IoT devices. To preserve the privacy of the datasets and/or the models on
public clouds, I intend to extend my work on CHET and EVA to support running more advanced
and bigger AI models using FHE. In addition, IoT devices are resource constrained compared
to the hardware used for training. I intend to build systems that can transparently prune the
learnt weights and reduce the model size without significant loss in accuracy.
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